

Parker Legris CleanFit: **Connection Solutions**

for Life Sciences & Clean Rooms

aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding

ENGINEERING YOUR SUCCESS.

The Fluid System Connectors Division Europe (Legris) of Parker Hannifin, the global leader in motion and control technologies, has edited this catalogue to promote the many different ranges of clean and compact push-in fittings, tubing, function fittings, valves and complementary products specific to Life Sciences and Clean Room applications.

With more than 40 years of experience in the manufacturing and marketing of high quality fittings, Parker Legris today proposes a wide range of proven solutions for medical and clean room environments: bio-medical equipment, breathing systems, diagnosis devices, pharmaceutical process...

For advice or more information, please do not hesitate to contact us.

Visit our web site today: www.parkerlegris.com.

3

	1 VIVE	
Directives and Regulations: the Parker Legris Offer	P. 5	
Part Number Identification	P. 6	1025 <mark>1</mark> 08 P04
Range of Push-In Fittings	P. 10	
Ranges of Tubing	P. 20	
Related Products	P. 24	

Connection Solutions for Life Sciences & Clean Room Applications

Respiratory

Oxygen Therapy/Oxygen Gas/Transfilling/Concentrators/ Oxygen Conserving Devices/Sleep Apnea/ICU/Aerosol

Preventative & Recovery

Perioperative Temperature Mgmt./Pre-OP/OR/Post-OP/ Therapeutic/Compression Therapy/Alternating Support Surfaces

Bio-Fluid Management

Dialysis/Medical Autoclaves/Dental/Hospital Infection Control/ Suction Therapy/Wound Therapy

Surgical & Diagnosis Surgical Power Tools/Imaging Equipment/Home Diagnostic Equipment/Advanced Prosthetics

Laboratory Gas Control/AA Spectrometry/Thermal Conductivity Detector

Clean Rooms

Air/Vacuum Conditioning Unit/Air Bearing Controller/ Semi-Conductor/Neonatal Ventilator/Filling & Packing


Pharmaceutical

Air & Nitrogen Supply/Buffer Preparation/Bioreactor Production/ Chromatography/Diafiltration & Concentration/Dosing/ Filling & Packing

Respiratory Anti-Dust Systems/O₂ Delivery Systems

MEDICAL

Directives and Regulations: the Parker Legris Offer

RoHS	European RoHS Directives: 2011/65/EC Relating to the limitation of the use of 6 hazardous substances in electrical and electronic equipment (mercury, lead, cadmium, hexavalent chromium, PBB and PBDE).	ISO 14001	Environmental Management Systems: Requirements with Guidance for Use.
REACh 🗸	REACH Regulation: no. 1907/2006 As product manufacturer, we are subject to article 33 of the regulation which defines a duty to inform when a candidate substance is present at more than 0.1% weight for weight.	ISO 14644-1	Clean Rooms and Associated Controlled Environ- ments. PART 1 : Classification of Air Cleanliness The document covers the classification of air cleanliness in clean rooms and associated controlled environments exclusively in terms of concentration of airborne particles. Only particle populations having cumulative size distributions based on threshold (lower limit) size ranging from 0.1 µm to 5 µm are considered for classification purposes.
CE	Pressurised Equipment Directive: 97/23/EC This directive regulates the design, manufacture and assessment of pressurised equipment to ensure operating safety.	ISO 13485 (pending)	Medical Devices - Quality Management Systems: Requirements for Regulatory Purposes This International Standard specifies require- ments for a quality management system where an organization needs to demonstrate its ability to provide medical devices and related services that consistently meet customer requirements and regulatory requirements applicable to medical devices and related services.
ATEX	ATEX Directive: 94/9/EC mandatory since 01/07/2003 This directive is mandatory for electrical and non- electrical equipment used in explosive gaseous or dusty atmospheres. The use of our products in these areas must be determined in accordance with the ATEX environment.	ISO 15001:2010	Anaesthetic and Respiratory Equipment, Compatibility with Oxygen ISO 15001:2010 specifies requirements for the oxygen compatibility of materials, components and devices for anaesthetic and respiratory appli- cations, which can come into contact with oxygen in normal conditions or in single fault conditions at gas pressures greater than 50 kPa.
FDA	CFR 21: Code of Federal Regulation Title 21: Food and Drugs This code consists of lists of prohibited subs- tances for materials intended to come into contact with foodstuffs.	CGA.	CGA G-4.1 Cleaning Equipment for Oxygen Service The cleaning methods described in this publica- tion are intended for cleaning equipment used in the production, storage, distribution, and use of liquid and gaseous oxygen.
ASTM G93	Standard Practice for Cleaning Methods and Cleanliness Levels for Material and Equipment Used in Oxygen-Enriched Environments This practice covers the selection of methods and apparatus for cleaning materials and equipment intended for service in oxygen-enriched environ- ments. Contamination problems encountered in the use of enriched air, mixtures of oxygen with other gases, or any other oxidizing gas may be solved by the same cleaning procedures applicable to most metallic and non-metallic materials and equipment.		 Protecting natural resources: By saving energy through the performance of our production facilities. Improving performance: By changing habits in order to promote new materials and concepts. Asserting our values for the protection of the environment: By having all our sites ISO 14001 certified in order to unify all our employees around clear objectives regarding the management of the environment.
Federal Institute for Materials Research and Testing	For grease used in fittings only.		

The Parker Legris product range offers compliance with numerous European standards associated in particular with the directives and regulations referred to above. The official texts of these directives are available on the site: http://eur-lex.europa.eu.

Certificates and Regulations

Certificates of conformity for our products are available on our web site. Contact us for any further information you require.

Part Number Identification

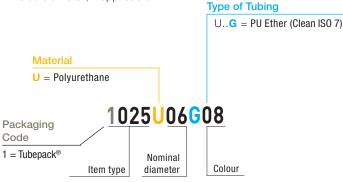
The part numbers used for our product ranges are coded in such a way as to make it easy to identify any particular item.

Part Number Construction for Fittings

The part numbers are selected using a technical mnemonic code.

Each fitting and valve is identified by:

- model series (4 digits)
- nominal diameter (2 digits)
- thread or 2nd nominal diameter (2 digits)
- a suffix, if applicable


6805	<mark>.08</mark>	17
Article Type	Tube O.D.	Thread Code
68XX = Fitting for Breathing & Medical Fluids Product Type	4 mm 04 6 mm 06 8 mm 08 10 mm 10 12 mm 12	00: no thread 10: 1/8 BSPT 13: 1/4 BSPT - 17: 3/8 BSPT 21: 1/2 BSPT 27: 3/4 BSPT
XX05 = Male Stud Fitting XX79 = Elbow -		19: M5x0.8 10: 1/8 BSPP 13: 1/4 BSPP 17: 3/8 BSPP 21: 1/2 BSPP

Part Number Construction for Tubing

The part numbers are selected using a technical mnemonic code.

Each tube is identified by:

- model series (4 digits and a letter)
- nominal diameter (2 digits)
- colour (2 digits)
- inside diameter, if applicable

Nominal diameter code: equates to the outside diameter. Colour code: see below

```
08 = (clear)
```

6

Product Ranges for Life Sciences & Clean Rooms

Push-In Fittings, with Polymer or Metal Adaptor (P.10)

Fluids: clean air, breathing and medical fluids

Materials: biopolymer, EPDM, FDA nickel-plated brass

Pressure: 15 bar

Temperature: -10°C to +95°C

Ø metric: 4 mm to 12 mm

Fluids: medical gases, ophthalmic gases, MEOPA, O_2 , N_2 , CO_2 , NO_2 , medical air, He, Ar, sensitive industrial fluids, compressed air, breathable air, cooling fluids, water

Materials: Polyurethane Ether Clean, ISO 7 Pressure: 10 bar

Temperature: -20°C to +90°C

O.D. metric: 4 mm to 12 mm

PFA Tubing (P.22)

Fluids: many fluids

Materials: – High purity medical-grade, clear – USP Class VI

Pressure: 36 bar Temperature: -196°C to +260°C O.D. metric: 4 mm to 12 mm

8

Clean Packaging

All fittings are packed in an antistatic and airtight bag, guaranteeing impeccable cleanliness for safe and easy use.

Product Ranges for Life Sciences & Clean Rooms

Straights6805 BSPT Metal Page 116801 BSPP / Metric Metal Page 116821 BSPT Polymer Page 12Image: Description of the second	6875 BSPT Polymer Page 12	_	Elbows 6809 BSPT Metal Page 12	6899 BSPP/Metric Metal Page 13	6879 BSPT Polymer Page 13
BSPT BSPP / Metric BSPP BSPT Metal Metal Metal Polymer	BSPT Polymer		BSPT Metal	BSPP/Metric Metal	BSPT Polymer
Ø S I I	Ì				
				3	-
Tees					
6808 6898 6803 6893 BSPT BSPP/Metric BSPT BSPT/Metric Metal Metal Metal Metal Page 13 Page 14 Page 14 Page 14	6878 BSPT Polymer Page 15	6873 BSPT Polymer Page 15			
p > / / .	7	f			
Tube-to-Tube Fittings			Bulkhead	Connectors	
Straight Elbow Tee	Y	_	Straight		
6806 6802 6804 Page 16 Page 16 Page 16	6840 Page 16		6816 Page 17		
	20				

Plug-In Fitti	ngs and Accesso	ries				
Elbow	Tees		Accessor	ies		
6882 Page 17	6888 Page 17	6883 Page 17	6866 Page 18	6822 Page 18	6851 Page 18	6826 Page 18
		A .	7	1		T
-			/			

Flexible Calibrated Tubing

Polyurethane Tubing

Semi-Rigid PU Ether Clean, ISO 7

1025U..G Page 20 Fluoropolymer Tubing

Semi-Rigid PFA USP VI

9

Push-In Fittings for Life Sciences & Clean Rooms

This "eco-designed" CleanFit range drives high-tech equipment beyond current connection limits in terms of cleanliness, reliability and safety. This ultra-clean range ensures perfect compatibility with most gases, and therefore complies with demanding applications and standards.

Customer Benefits

Ease of Use	Ergonomic and aesthetic design Compact product fully adapted to portable devices Antistatic and airtight packaging to prevent contamination	
Purity & Security	Recommended for O ₂ applications and pure gases High cleanliness level, according to ASTM G93: level B and particle size level 300 100% leak-tested in production Date coding to guarantee quality and traceability	
Hi-Tech Materials Complying with Health Regulations	Bio-sourced polymer, chemical nickel-plated brass Compatible with cleaning agents recommended for decontamination processes Excellent chemical and mechanical resistance, even at high temperatures Sterilisable using standard chemical and radiation procedures	Respiratory Bio-Fluid Management Clean Rooms Pharmaceutical Process Laboratory O ₂ Circuits

Technical Characteristics

Compatible Fluids	Breathing, neutral & pure medical gases Other fluids: please consult us										
Working Pressure	raoaan to i	Vacuum to 15 bar Working pressure varies according to temperature (see below)									
Working Temperature	-10°C to +9	-10°C to +95°C									
Tightening Torques	Thread	1/8" and 1/4"				3/8" and 1/2"					
(BSPT/NPTF)	daN.m		0.15			0.30					
Tightening Torques	Thread	M5 x 0.8	G1/8	G1/4		G3/8	G1/2				
(Metric & BSPP)	daN.m	0.16	0.8	1.2		3	3.5				

Reliable performance is dependent upon the type of fluid conveyed, component materials, tubing and cleaning agents being used.

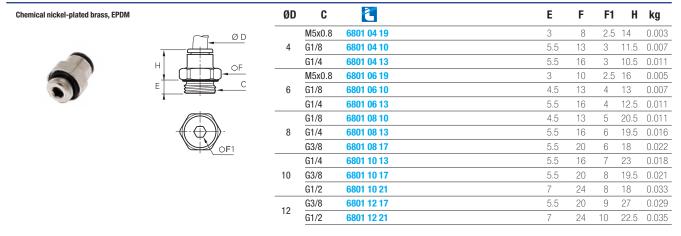
Use is guaranteed with a vacuum of 755 mm Hg (99% vacuum).

DI: 2002/95/EC (RoHS), 2011/65/EC DI: 1907/2006 (REACH) ASTM G93-03.B-300 ISO 15001 < 30 bar

Component Materials

BAM (grease certification residue) CGA G4.1 EN 12021 < 0,1 mg/m³ VDI 2083-8 (in progress)

Pressure and Temperature Performance


10

-10°C	Pressure (bar)	+1°C	Pressure (bar)	+20°C	Pressure (bar)	+40°C	Pressure (bar)	+65°C	Pressure (bar)	+95°C	Pressure (bar)
mm Ø	Fittings										
4	15	4	15	4	15	4	15	4	10	4	4
6	15	6	15	6	15	6	15	6	10	6	4
8	15	8	15	8	15	8	15	8	10	8	4
10	13	10	13	10	13	10	13	10	7	10	4
12	11	12	11	12	11	12	11	12	7	12	4

Stud Fitting, Male BSPT Thread

Chemical nickel-plated brass, EPDM		ØD	C	٤.	F	F1	Н	kg
	ØD	4	R1/8	6805 04 10	10	3	9.5	0.005
-		4	R1/4	6805 04 13	14	3	6.5	0.012
		6	R1/8	6805 06 10	10	4	11.5	0.005
	c the second sec	0	R1/4	6805 06 13	14	4	8.5	0.011
			R1/8	6805 08 10	13	5	20	0.011
20 11		8	R1/4	6805 08 13	14	6	17	0.014
	$\langle \langle \varphi \rangle \rangle$		R3/8	6805 08 17	17	6	13	0.021
	OF1		R1/4	6805 10 13	16	7	20	0.017
		10	R3/8	6805 10 17	17	8	16.5	0.019
			R1/2	6805 10 21	21	8	14	0.037
		12	R3/8	6805 12 17	19	9	24	0.028
		12	R1/2	6805 12 21	21	10	19.5	0.036

Stud Fitting, Male BSPP and Metric Thread

Stud Fitting, Female BSPP Thread

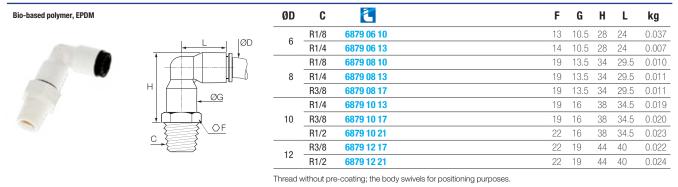
Chemical nickel-plated brass, EPDM		ØD	C	2	E	F	H	kg
		4	G1/8	6814 04 10	9.5	13	22.5	0.010
	M ØD	6	G1/8	6814 06 10	9.5	13	24.5	0.011
		0	G1/4	6814 06 13	13.5	16	28.5	0.017
	Ť I I I		G1/8	6814 08 10	9.5	13	29	0.015
	H J	8	G1/4	6814 08 13	13.5	16	33	0.021
			G3/8	6814 08 17	14	19	34	0.025
			G1/4	6814 10 13	13.5	16	36	0.027
		10	G3/8	6814 10 17	14	19	36	0.027
			G1/2	6814 10 21	19.5	24	41.5	0.048
		12	G3/8	6814 12 17	14	19	40	0.033
		12	G1/2	6814 12 21	19.5	24	45.5	0.052

6821 Stud Standpipe, Male BSPT Thread

Bio-based polymer		ØD	C	2	F	Н	kg
			R1/8	6821 06 10	13	19	0.002
		6	R1/4	6821 06 13	14	19	0.003
5	н		R1/8	6821 08 10	19	23	0.003
		8	R1/4	6821 08 13	19	23	0.004
			R3/8	6821 08 17	19	23	0.004
			R1/4	6821 10 13	19	25	0.004
	E C	10	R3/8	6821 10 17	19	25	0.005
			R1/2	6821 10 21	22	25	0.008
		10	R3/8	6821 12 17	22	28	0.005
		12	R1/2	6821 12 21	22	28	0.007
		Thread v	without pr	-coating			

6875 Stud Fitting, Male BSPT Thread

Bio-based polymer, EPDM		ØD	C	٤	F	F1	H	kg
		4	R1/8	6875 04 10	11	3	18	0.003
		4	R1/4	6875 04 13	14	3	18	0.004
	ØD	6	R1/8	6875 06 10	11	4	18	0.002
		б	R1/4	6875 06 13	14	4	18	0.004
			R1/8	6875 08 10	17	6	20	0.004
		8	R1/4	6875 08 13	14	6	20	0.004
			R3/8	6875 08 17	17	6	20	0.005
			R1/4	6875 10 13	17	7	21.5	0.005
	10	10	R3/8	6875 10 17	19	7	21.5	0.007
	OF1		R1/2	6875 10 21	22	7	21.5	0.010
		12	R3/8	6875 12 17	19	9	24.5	0.008
		12	R1/2	6875 12 21	22	9	24.5	0.012
		Thread	without pre	-coating				


6809 Stud Elbow, Male BSPT Thread

Bio-based polymer, chemical nickel-	plated brass, EPDM	ØD	C	2	F	G	Н	L	kg
	. L .		R1/8	6809 04 10	10	8.5	23	19	0.008
		4	R1/4	6809 04 13	14	8.5	23.5	19	0.018
		6	R1/8	6809 06 10	10	10.5	27	22.5	0.010
		0	R1/4	6809 06 13	14	10.5	27.5	22.5	0.020
and y			R1/8	6809 08 10	13	13.5	33.5	29.5	0.018
		ØG ØD 8		6809 08 13	14	13.5	32.5	29.5	0.022
				6809 08 17	17	13.5	33	29.5	0.032
			R1/4	6809 10 13	15	16	39.5	34	0.031
		10	R3/8	6809 10 17	17	16	39.5	34	0.041
			R1/2	6809 10 21	21	16	39.5	34	0.060
		12	R3/8	6809 12 17	19	19	45.5	40.5	0.051
		12	R1/2	6809 12 21	21	19	45.5	40.5	0.065
		The bo	dy swive	Is for positioning purposes.					

6899 Stud Elbow, Male BSPP and Metric Thread

Bio-based polymer, chemical nicke	-plated brass, EPDM	ØD	C	2	Ε	F	G	Н	L	kg
			M5x0.8	6899 04 19	3.5	8	8.5	23	19	0.002
	I	4	G1/8	6899 04 10	4.5	13	8.5	22.5	19	0.006
	◄		G1/4	6899 04 13	5.5	16	8.5	22.5	19	0.011
			M5x0.8	6899 06 19	3.5	10	10.5	26.5	22.5	0.003
3		6	G1/8	6899 06 10	4.5	13	10.5	26.5	22.5	0.006
0015			G1/4	6899 06 13	5.5	16	10.5	26.5	22.5	0.011
	H ØG ØD		G1/8	6899 08 10	4.5	13	13.5	35	29.5	0.009
			G1/4	6899 08 13	5.5	16	13.5	33	29.5	0.012
			G3/8	6899 08 17	5.5	20	13.5	33	29.5	0.017
			G1/4	6899 10 13	5.5	16	16	40.5	34	0.014
		10	G3/8	6899 10 17	5.5	20	16	39	34	0.017
			G1/2	6899 10 21	7	24	16	39	34	0.026
		10	G3/8	6899 12 17	5.5	20	19	42	40	0.019
		12	G1/2	6899 12 21	7	24	19	42	40	0.029

6879 Stud Elbow, Male BSPT Thread

6808 Stud Branch Tee, Male BSPT Thread

Bio-based polymer, chemical nicke	I-plated brass, EPDM	ØD	C	2	FG	H	L/2	kg
		4	R1/8	6808 04 10	10 8.5	23	14	0.007
		4	R1/4	6808 04 13	14 8.5	23	14	0.017
	L L	6	R1/8	6808 06 10	10 10.5	27	16	0.008
			R1/4	6808 06 13	14 10.5	27	16	0.018
			R1/8	6808 08 10	13 13.5	33.5	5 23	0.010
			R1/4	6808 08 13	14 13.5	32	23	0.018
S			R3/8	6808 08 17	17 13.5	33	23	0.022
			R1/4	6808 10 13	15 16	39	26.5	0.019
	C C F	10	R3/8	6808 10 17	17 16	39	26.5	0.024
			R1/2	6808 10 21	21 16	39	26.5	0.036
		10	R3/8	6808 12 17	19 19	45	31	0.029
		12	R1/2	6808 12 21	21 19	45	31	0.041

The body swivels for positioning purposes.

Clean Packaging

All fittings are packed in an antistatic and airtight bag, guaranteeing impeccable cleanliness for safe and easy use.

6898 Stud Branch Tee, Male BSPP and Metric Thread

Bio-based polymer, chemical nickel	-plated brass, EPDM	ØD	C	٤.	E	F	G	Н	L/2	kg
			M5x0.8	6898 04 19	3.5	8	8.5	24	14	0.003
	L L	4	G1/8	6898 04 10	5	13	8.5	22	14	0.007
			G1/4	6898 04 13	5.5	16	8.5	22	14	0.012
			M5x0.8	6898 06 19	3.5	10	10.5	28	16	0.004
		6	G1/8	6898 06 10	5	13	10.5	26	16	0.008
10 A 10			G1/4	6898 06 13	5.5	16	10.5	26	16	0.013
			G1/8	6898 08 10	4.5	13	13.5	35	23	0.012
	E C C F	8	G1/4	6898 08 13	5.5	16	13.5	33	23	0.015
	<u> </u>		G3/8	6898 08 17	5.5	20	13.5	33	23	0.021
			G1/4	6898 10 13	5.5	16	16	43	26.5	0.019
		10	G3/8	6898 10 17	5.5	20	16	43	26.5	0.022
			G1/2	6898 10 21	7.5	24	16	39	26.5	0.032
		12	G3/8	6898 12 17	5.5	20	19	42	31	0.026
		12	G1/2	6898 12 21	7	24	19	42	31	0.036

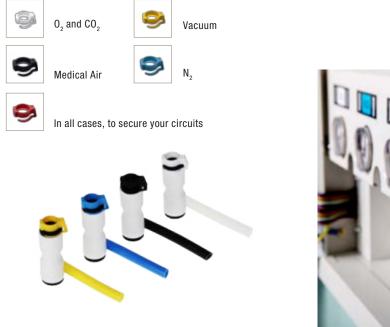
The body swivels for positioning purposes

6803 Stud Run Tee, Male BSPT Thread

6893

Stud Run Tee, Male BSPP and Metric Thread

Bio-based polymer, chemical nickel-pla	ted brass, EPDM	ØD	C	2	Е	F	G	H	H1	L	kg
	I.		M5x0.8	6893 04 19	3.5	8	8.5	32	19	14.5	0.003
		4	G1/8	6893 04 10	5	13	8.5	30	18	14.5	0.007
			G1/4	6893 04 13	5.5	16	8.5	30	18	14.5	0.012
			M5x0.8	6893 06 19	3.5	10	10.5	39	23	17.5	0.004
		6	G1/8	6893 06 10	5	13	10.5	38	22	17.5	0.008
38			G1/4	6893 06 1 3	5.5	16	10.5	38	22	17.5	0.013
0.1			G1/8	6893 08 10	4.5	13	13.5	54	31	23	0.012
	E Cof	8	G1/4	6893 08 13	5.5	16	13.5	52	29	23	0.015
	▲ ~_c		G3/8	6893 08 17	5.5	20	13.5	52	29	23	0.021
			G1/4	6893 10 13	5.5	16	16	61	35	26.5	0.019
		10	G3/8	6893 10 17	5.5	20	16	61	35	26.5	0.022
			G1/2	6893 10 2 1	7.5	24	16	61	35	26.5	0.032
		12	G3/8	6893 12 17	5.5	20	19	67	36	31	0.026
		12	G1/2	6893 12 21	7	24	19	67	36	31	0.042
		The bo	dy swivels	for positioning purposes.							


6878 Branch Tee, Male BSPT Thread

ØD Ł Bio-based polymer, EPDM C F G H L/2 kg R1/8 6878 06 1**0** 13 10.5 28 18 800.0 6 R1/4 6878 06 13 14 28 18 0.009 0.012 6878 08 1**0** 34 R1/8 19 23 13.5 34 8 R1/4 6878 08 13 19 23 ØG R3/8 6878 08 17 13.5 34 23 0.013 19 R1/4 6878 10 13 19 16 38 26.5 0.018 OF 10 R3/8 **6878 10 17** 19 16 38 26.5 0.019 R1/2 6878 10 21 22 16 38 26.5 0.022 R3/8 6878 12 17 22 19 44 31 0.024 12 R1/2 19 6878 12 21 22 44 31 0.026 Thread without pre-coating; the body swivels for positioning purposes.

6873 Run Tee, Male BSPT Thread

Bio-based polymer, EPDM		ØD	C	2	F	G	H	H1	L	kg
			R1/8	6873 06 10	13	10.5	40	22	18.5	0.008
	~ .	6	R1/4	6873 06 13	14	10.5	40	22	18.5	0.009
6 /			R1/8	6873 08 10	19	13.5	50	27	23	0.012
		8	R1/4	6873 08 13	19	13.5	50	27	23	0.01
	⊢		R3/8	6873 08 17	19	13.5	50	27	23	0.013
	H1 D		R1/4	6873 10 13	19	16	56.5	30	26.5	0.018
5		10	R3/8	6873 10 17	19	16	56.5	30	26.5	0.019
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			R1/2	6873 10 21	22	16	56.5	30	26.5	0.022
		12	R3/8	6873 12 17	22	19	65.5	34.5	31	0.024
		12	R1/2	6873 12 21	22	19	65.5	34.5	31	0.026

Our coloured safety clips and tubing allow for circuit identification for breathable fluids according to the normalized rules in medical environments. Please consult our general Catalogue for more information (page 1-37).





# **Tube-to-Tube Fittings**

### 6806 Equal and Unequal Tube-to-Tube Connector

Bio-based polymer, EPDM		ØD	ØD1	2	G	L	kg
			4	6806 04 00	8.5	26.5	0.002
-		4	6	6806 04 06	10.5	29	0.002
	<b>₄</b> ►	6	6	6806 06 00	10.5	30	0.004
(1997)		0	8	6806 06 08	13.5	37	0.005
		0	8	6806 08 00	13.5	37	0.004
	ØD ØG ØD1	0	10	6806 08 10	16	42	0.007
		10	10	6806 10 00	16	42	0.009
		10	12	6806 10 12	19	50	0.013
		12	12	6806 12 00	19	50.5	0.009

### 6802 Equal and Unequal Elbow

Bio-based polymer, EPDM		ØD	ØD1	٤	G	L	kg
		4	4	6802 04 00	8.5	19	0.002
		4	6	6802 04 06	10.5	24	0.004
		6	6	<b>6802 06 00</b>	10.5	24	0.004
		0	8	<b>6802 06 08</b>	13.5	29.5	0.006
	ØG	8	8	6802 08 00	13.5	29	0.004
-		0	10	6802 08 10	16	34.5	0.008
		10	10	<b>6802 10 00</b>	16	34.5	0.005
		10	12	6802 10 12	19	40.5	0.013
		12	12	6802 12 00	19	40.5	0.010
		-					

### 6804 Equal Tee

Bio-based polymer, EPDM		ØD	ØD1	<b>E</b>	G	Н	L/2	kg
	L/2 L/2 (2D)	4	4	6804 04 00	8.5	20	15.5	0.004
		6	6	6804 06 00	10.5	23	18	0.006
		8	8	6804 08 00	13.5	29	22.5	0.006
		10	10	6804 10 00	16	34.5	26.5	0.009
		12	12	6804 12 00	19	40	31	0.014

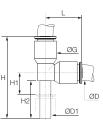
### 6840 Equal Single Y Piece

Bio-based polymer, EPDM		ØD	ØD1	2	н	К	L	Ν	kg
		4	4	6840 04 00	17.5	8.5	30	9	0.004
		6	6	<b>6840 06 00</b>	21.5	10.5	36.5	11	0.008
1		8	8	6840 08 00	28	13.5	44.5	14.5	0.007
		10	10	6840 10 00	33	16	53	17	0.010
And a second sec	ØD	12	12	<b>6840 12 00</b>	39	19	60.5	20	0.025
	K I K								

# **Bulkhead Connectors and Plug-In Fittings**

#### 6816 Equal Bulkhead Connector ØT min Κ Ł Bio-based polymer, EPDM ØD F L L1 kg max L1 4 6816 04 00 5.5 15.5 10.5 10.5 0.018 13 6 **6816 06 00** 15 8.5 20 10 12.5 0.004 8 6816 08 00 18 14.5 27 10.5 15.5 0.007 ØD 10 **6816 10 00** 22 14.5 30 13 18.5 0.012 12 **6816 12 00** 26 18.5 35 15.5 22.5 0.020

### 6882 Equal and Unequal Plug-In Elbow


Bio-based polymer, EPDM		ØD	ØD1	2	G	Н	H1	H2	L	kg
		4	4	6882 04 00	8.5	23	6	15.5	15	0.003
	⊢ L ØG	4	6	6882 04 06	10.5	26.5	7	17	16.5	0.002
			6	6882 06 00	10.5	26.5	7	17	17	0.003
		6	4	6882 06 04	10.5	25	7	15.5	17	0.001
			8	6882 06 08	13.5	33.5	8	21.5	22.5	0.004
	H2	8	8	6882 08 00	13.5	33.5	8	21.5	22.5	0.004
	0D1	10	10	6882 10 00	16	39	9.5	24.5	26.5	0.004
		12	12	6882 12 00	19	44.5	10	27	31	0.012

### 6888 Plug-In Equal Branch Tee

Bio-based polymer, EPDM		ØD	ØD1	2	G	Н	H1	H2	L/2	kg
	L/2 L/2 .	4	4	6888 04 00	8.5	25	6	15.5	15	0.005
	ØD	6	6	6888 06 00	10.5	28.5	7	17	16	0.006
		8	8	6888 08 00	13.5	33.5	8	21.5	23	0.005
		10	10	6888 10 00	16	41	9.5	24.5	26.5	0.007
	MG H2	12	12	<b>6888 12 00</b>	19	46.5	10	27	31	0.016

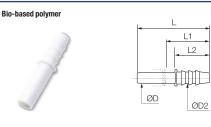
### 6883 Plug-In Equal Run Tee





ØD	ØD1	2	G	Η	H1	H2	L	kg
4	4	6883 04 00	8.5	33	6	15.5	15	0.002
6	6	6883 06 00	10.5	38.5	7	17	18	0.002
8	8	6883 08 00	13.5	49	8	21.5	23	0.005
10	10	6883 10 00	16	57	10.5	25.5	26.5	0.012
12	12	6883 12 00	19	65	36.5	27	31	0.016

# **Plug-In Fittings and Accessories**


-**T** 

ØD1



Ł Bio-based polymer, EPDM ØD ØD1 G L L1 kg 4 6 6866 04 06 8.5 38 23.5 0.004 8 6866 06 08 10.5 38 0.004 20 6 L1 10 **6866 06 10** 10.5 39 17.5 0.002 6866 08 10 10 13.5 48.5 28.5 0.009 8 24.5 6866 08 12 13.5 48.5 0.004 12 10 12 6866 10 12 52 33.5 0.005 16 ØG ØD1 ØD

### 6822 Plug-In Barb Connector



6 4	-					
0	- 7	<b>6822 06 04</b>	39	25	17	0.004
8 6	8.5	6822 08 06	43	25	17	0.005
12 12	15.5	6822 12 62	56	32	27.5	0.004

### 6851 End Cap

L Bio-based polymer, EPDM ØD G H kg 4 6851 04 00 8.5 15 0.001 6 6851 06 00 10.5 17 0.002 ØD 8 0.003 6851 08 00 13.5 21.5 10 6851 10 00 16 0.003 22 ØG н 12 6851 12 00 19 27.5 0.006

### **6826** Blanking Plug

Bio-based polymer	1	ØD	1	G	L	L1	kg
	<b>∢</b> ►	4	6826 04 00	6	30	15.5	0.001
		6	6826 06 00	8	33	16.5	0.001
		8	6826 08 00	10	35	17.5	0.002
1	ØG	10	6826 10 00	12	42	21	0.003
		12	6826 12 00	14	45	22	0.004
6							



# PU Ether Tubing, Extruded in ISO 7 Clean Room

This range of PU tubing, which meets rigourous technical requirements and is also bio-compatible, sterilisable and certified ISO 15001, has been specifically designed for use in medical devices or clean room applications.

## **Customer Benefits**

Safe & Long-Lasting Use of Equipment Biocompatible and very stable Sterilisable using standard chemical and radiation procedures Certified for medical applications and clean rooms High cleanliness level Microbial resistance

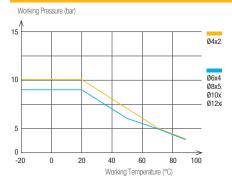
Maximum Excellent mechanical properties **Reliability &** Exceptional resistance to twisting and compression **Efficiency of** Wide chemical compatibility Use

Very good flexibility ensuring ease of use and space saving Transparency to facilitate visibility of fluids Optimum life cycle management



**Respiratory Devices** Pharmaceutical Process Clean Rooms Laboratory Gas Sampling O_o Circuits Medical Fluid Conveyance

Applications


# **Technical Characteristics**

Compatible Fluids	Medical gases, ophthalmic gases, MEOPA, $O_2$ , $N_2$ , $CO_2$ , $NO_2$ , medical air, He, Ar, sensitive industrial fluids, compressed air, breathable air, cooling fluids, water, other
Working Pressure	Vacuum to 10 bar
Working Temperature	-20°C to +90°C
Component Materials	Semi-Rigid Polyurethane Ether Clean, ISO 7 (52 Shore D)

Reliable performance is dependent upon the type of fluid conveyed, fittings and cleaning agents being used.

Use is guaranteed with a vacuum of 755 mm Hg (99% vacuum).

#### **Performance of PU Tubing**



Tube O.D.	Tube O.D. Tolerance
4 to 8 mm	+0.10 / -0.10
10 to 12 mm	+0.15 / -0.15

Connected to Parker Legris push-in fittings, the calibration of PU tubing ensures perfect sealing based on NF E49-101.

#### **Regulations**

Medical & Pharmaceutical ISO 15001: Fully compatible with oxygen and respiratory fluids ASTM G93-03 Classification sur demande

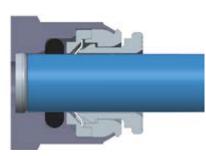
#### Industrial

DI: 2002/95/EC (RoHS), 2011/65/EC DI: 97/23/EC (PED) RG:1907/2006 (RÉACH)

**Food Industry** FDA: 21 CFR 177.2600 RG: 1935/2004

> Packaging Tubepack®: 25 m

To calculate burst pressure, the values in this graph should be multiplied by 3.


### **1025U..G** Semi-Rigid PU Ether Tubing Clean, ISO 7

#### Tubepack® 25 m

<b>0.D.</b> (mm)	<b>I.D.</b> (mm)	CR	Clear	kg
4	2,5	8	1025U04G08	0.310
6	4	12	1025U06G08	0.591
8	5,5	18	1025U08G08	0.971
10	7	23	1028U10G08	1.467
12	8	25	1025U12G08	2.406

#### Tube Insertion Length

For unmarked tubing, we recommend that the insertion length be determined prior to connection according to the guidelines mentioned below in order to guarantee correct connection.



ØD tube	L (mm)
4	13
6	14,5
8	18,5
10	20,5
12	24,5

The release button dimensions have a tolerance of +/-1. These values are in line with ISO 14743.

### **Clean Packaging**

All tubing is packed in an antistatic and airtight bag, guaranteeing impeccable cleanliness for safe and easy use.



# Medical-Grade PFA Tubing

Parker Legris **PFA** (perfluoroalkoxy) tubing offers **10 times greater durability** than other fluoropolymer tubings (PTFE, FEP and PVDF) under severe chemical and mechanical conditions. This ultra-pure and clean tubing range is **USP VI certified** and offers perfect compatibility with all applications, even in extreme environments.

# **Customer Benefits**

Great Versatility	A flexible alternative to stainless steel tubing Broad range of working temperatures, from cryogenic to extreme heat Non-stick properties allowing conveyance of many fluids & gases	$\bigcirc$
	Fluoropolymer with the lowest permeability Tube marking on request	Fuel Cells Electrical/Electronics Aircraft
Outstanding	Exceptional chemical inertia	Pharmaceutical
Lifespan	Outstanding resistance to ageing Non-flammable UV-transparent Silicone-free	Medical Chemical Clean Rooms

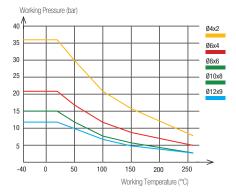
# **Technical Characteristics**

Compatible	Medical, bio-compatible,
Fluids	food process, gas, compressed air
Working Pressure	Vacuum to 36 bar
Working Temperature	-196°C to +260°C
Component	Perfluoroalkoxy - 55 Shore D
Materials	High Purity PFA

Reliable performance is dependent upon the type of fluid conveyed, fittings and cleaning agents being used.

Use is guaranteed with a vacuum of 755 mm Hg (99% vacuum).

#### Regulations


Medical USP: Class VI (A) External communication devices

#### Industrial

UL94 V-0 (Fire resistance) DI: 2002/95/EC (RoHS), 2011/65/EC DI: 97/23/EC (PED) RG:1907/2006 (REACH)

Food Industry FDA: 21 CFR 177.1550 (clear, translucent coloured) RG: 1935/2004

#### **Performance of PFA Tubing**



Tube O.D.	Tube O.D. Tolerance
4 to 8 mm	+0.10 / -0.10
10 to 12 mm	+0.15 / -0.15

Connected to Parker Legris push-in fittings, the calibration of Parker Legris tubing ensures perfect sealing based on NF E49-100.

**Packaging** Tubepack[®]: 10 m, 50 m Applications

1

To calculate burst pressure, the values in this graph should be multiplied by 3.

# **1010T...P** Fluoropolymer (PFA) Tubing

#### Tubepack[®] 10 m

<b>0.D.</b> (mm)	<b>I.D.</b> (mm)	R	High purity	kg
4	2	12	1010T04P00	0.087
6	4	34	1010T06P00	0.237
8	6	60	1010T08P00	0.410
10	8	95	1010T10P00	0.723
12	9	120	1010T12P00	1.148

# **1050T...P** Fluoropolymer (PFA) Tubing

#### Tubepack[®] 50 m

<b>0.D.</b> (mm)	<b>I.D.</b> (mm)	R	High purity	kg
4	2	12	1050T04P00	0.435
6	4	34	1050T06P00	1.185
8	6	60	1050T08P00	2.050
10	8	95	1050T10P00	3.615
12	9	120	1050T12P00	5.740

### **Clean Packaging**

All tubing is packed in an antistatic and airtight bag, guaranteeing impeccable cleanliness for safe and easy use.



# **Related Products**

PE & Advanced PE Tubing	Cartridges for O, Applications	
www.liquifit.net		Upon Request Onl
Fluids: many fluids Aterials: Low density polyethylene 50% reticulated polyethylene, food-grade 7 colours Pressure: 20 bar Femperature: -40°C to +95°C D. metric: 4 mm to 12 mm D. inch: 1/8" to 1/2"	Fluids: O ₂ , compressed air Materials: EPDM, NBR Pressure: 20 bar Temperature: -20°C to +80°C Ø metric: 4 mm to 12 mm	
For details on additional tubing ranges, consult our master Catalogue: 1015YF, 1030YF, 1075YF, 1096YF, 1098YF, 1099YF	Filter fittings, designed specifically for the filtrational also be made available.	on of air and gas, can
0 0 0		on of air and gas, can Upon Request Only
1015YF, 1030YF, 1075YF, 1096YF, 1098YF, 1099YF	also be made available.	

#### Ball Valve Codification for O₂ Applications

24

These ball valves allow the valve to be adapted to specific needs. They are identified by the specific colour identification on the handle and are manufactured according to a special process (greased and degreased), guaranteeing perfect chemical compatibility with breathable fluids.



Identifica	Identification		Lever	Ball	Stem and Wear- Compensation Seals	Seat Seals	Grease	
Suffix on the body	Colour bands on the lever	Nickel- plated brass	Standard	Nickel- plated polished brass	EPDM	Rilsan: graphite- impregnated	Compatible Oxygen BAM certified	Application Examples
30		•	•	•	•	•	•	Gaseous oxygen & breathable circuits



# Together, We Can Build Sustainable Development

Parker Legris, ISO 14001 certified, has made the conservation of resources and protection of the environment a major priority. We have incorporated improved environmental management as a permanent feature in the vision and mission of the company, aiming to benefit nature, technology and mankind.

#### Our actions are coupled with your environmental process

#### Reducing the impact on industrial sites

Parker Legris has integrated environmental protection management into the operation of its industrial sites. This approach has enabled 85% of waste to be recovered and has reduced energy consumption by 15%.

# Offering ecologically responsible products

Under its continuous improvement process, Parker Legris has integrated ecological design as an input parameter to innovation and uses Life Cycle Assessment (LCA) to optimise the environmental impact of its products. **Providing information on the PEP** (Product Environmental Profile)

This communication tool is common to all industries and professions and delivers a reliable and clear message for promoting ecological advances and incorporating this data within the LCA equipment.

#### Getting ahead of regulations

Parker Legris goes beyond its statutory obligations and endeavours to find a good match between choice of materials, limitation of hazardous substances, selection of recycling channels and industrial performance to encourage the recycling of products at end of life.

### Using our technology reduces the environmental impact





# **Parker's Motion & Control Technologies**

At Parker, we're guided by a relentless drive to help our customers become more productive and achieve higher levels of profitability by engineering the best systems for their requirements. It means looking at customer applications from many angles to find new ways to create value. Whatever the motion and control technology need, Parker has the experience, breadth of product and global reach to consistently deliver. No company knows more about motion and control technology than Parker. For further info call 00800 27 27 5374.



#### Fluid & Gas Handling Key Markets

Aerial lift Agriculture Bulk chemical handling Construction machinery Food & beverage Fuel & gas delivery Industrial machinery Life sciences Marine Mining Mobile Ol & gas Renewable energy Transportation

#### Key Products

Check valves Connectors for low pressure fluid conveyance Deep sea umbilicals Diagnostic equipment Hose couplings Industrial hose Mooring systems & power cables PTFE hose & tubing Quick couplings Rubber & thermoplastic hose Tube fittings & adapters Tubing & plastic fittings

--Parker



#### Aerospace Key Markets

Aftermarket services Commercial transports Engines General & business aviation Helicopters Launch vehicles Military aircraft Missiles Power generation Regional transports Ummanned aerial vehicles

#### Key Products

Control systems & actuation products Engine systems & components Fluid conveyance systems & components Fluid metering, delivery & atomization devices Fuel systems & components Fuel tank inerting systems & components Thermal management Wheels & brakes



Hydraulics Key Markets Aerial lift Agriculture

Alternative energy Construction machinery Forestry Industrial machinery Machine tools Marine Material handling Mining Oli & gas Power generation Refuse vehicles Renewable energy Truck hydraulics Turf equipment

#### **Key Products**

Accumulators Cartridge valves Electrohydraulic actuators Human machine interfaces Hydraulic oylinders Hydraulic cylinders Hydraulic usystems Hydraulic uses & controls Hydraulic aves & controls Hydrostatic steering Integrated hydraulic circuits Power take-offs Power units Rotary actuators Seneors



#### Climate Control Key Markets

Agriculture Air conditioning Construction Machinery Food & beverage Industrial machinery Life sciences Oil & gas Precision cooling Process Refrigeration Transportation

#### Key Products

Accumulators Advanced actuators CO₂ controls Electronic controllers Filter driers Hand shut-off valves Heat exchangers Hose & fittings Pressure regulating valves Refrigerant distributors Safety relief valves Smart pumps Solenoid valves



#### Pneumatics

Key Markets Aerospace Conveyor & material handling Factory automation Life science & medical Machine tools Packaging machinery Transportation & automotive

#### **Key Products**

Air preparation Brass fittings & valves Manifolds Pneumatic accessories Pneumatic averators & grippers Pneumatic averators & Quick disconnects Rotary actuators Rubber & thermoplastic hose & couplings Structural extrusions Thermoplastic tubing & fittings Vacuum generators, cups & sensors



#### Electromechanical

Key Markets Aerospace Factory automation Life science & medical Machine tools Packaging machinery Paper machinery Plastics machinery & converting Primary metals Semiconductor & electronics Textile Wire & cable

#### Key Products

AC/DC drives & systems Electric actuators, gantry robots & slides Electrohydrostatic actuation systems Electromechanical actuation systems Human machine interface Linear motors Stepper motors, servo motors, drives & controls Structural extrusions



#### Process Control

Key Markets Alternative fuels Biopharmaceuticals Chemical & refining Food & beverage Marine & shipbuilding Medical & dental Microelectronics Nuclear Powe Offshore oil exploration Oil & gas Pharmaceuticals Power generation Pulp & paper Steel Water/wastewater

#### Key Products

Analytical Instruments Analytical sample conditioning products & systems Chemical injection fittings & valves Fluoropolymer chemical delivery fittings, valves & pumps High purity gas delivery fittings, valves, regulators & digital flow controllers Industrial mass flow meters/ controllers Permanent no-weld tube fittings Precision industrial regulators & flow controllers Process control double block & bleeds Process control fittings, valves, regulators & manifold valves



#### Filtration

Key Markets Aerospace Food & beverage Industrial plant & equipment Life sciences Marine Mobile equipment Oil & gas Power generation & renewable energy Process Transportation Water Purification

#### Key Products

Analytical gas generators Compressed air filters & dryers Engine air, coolant, fuel & oil filtration systems Fluid condition monitoring systems Hydrogen, nitrogen & zero air generators Instrumentation filters Membrane & fiber filters Microfiltration Sterile air filtration Water desalination & purification filters & systems



#### Sealing & Shielding Key Markets

Aerospace Chemical processing Consumer Fluid power General industrial Information technology Life sciences Microelectronics Military OII & gas Power generation Renewable energy Telecommunication

#### Key Products

Dynamic seals Eastomeric o-rings Electro-medical instrument design & assembly EMI shielding Extruded & precision-cut, fabricated elastomeric seals High temperature metal seals Homogeneous & inserted elastomeric shapes Medical device fabrication & assembly Metal & plastic retained composite seals Shielded optical windows Silicone tubing & extrusions Thermal management Vibration dampening

